Feature versus Raw Sequence: Deep Learning Comparative Study on Predicting Pre-miRNA

نویسندگان

  • Jaya Thomas
  • Sonia Thomas
  • Lee Sael
چکیده

Background: Should we input known genome sequence features or input sequence itself in deep learning framework? As deep learning more popular in various applications, researchers often come to question whether to generate features or use raw sequences for deep learning. To answer this question, we study the prediction accuracy of precursor miRNA prediction of feature-based deep belief network and sequence-based convolution neural network. Results: Tested on a variant of six-layer convolution neural net and three-layer deep belief network, we find the raw sequence input based convolution neural network model performs similar or slightly better than feature based deep belief networks with best accuracy values of 0.995 and 0.990, respectively. Both the models outperform existing benchmarks models. The results shows us that if provided large enough data, well devised raw sequence based deep learning models can replace feature based deep learning models. However, construction of well behaved deep learning model can be very challenging. In cased features can be easily extracted, feature-based deep learning models may be a better alternative.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Neural Network Based Precursor microRNA Prediction on Eleven Species

MicroRNA (miRNA) are small non-coding RNAs that regulates the gene expression at the post-transcriptional level. Determining whether a sequence segment is miRNA is experimentally challenging. Also, experimental results are sensitive to the experimental environment. These limitations inspire the development of computational methods for predicting the miRNAs. We propose a deep learning based clas...

متن کامل

شناسایی RNA های غیرکدکننده کوتاه ‌عملکردی با استفاده از روش های بیوانفورماتیکی در گوسفند و بز

MicroRNAs (miRNAs) are small non-coding RNAs that have functional roles in post-transcriptional modification. They regulate gene expression by an RNA interfering pathway through cleavage or inhibition of the translation of target mRNA. Numerous miRNAs have been described for their important functions in developmental processes in numerous animals, but there is limited information about sheep an...

متن کامل

Deep Recurrent Neural Network-Based Identification of Precursor microRNAs

MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) which play key roles in post-transcriptional gene regulation. Direct identification of mature miRNAs is infeasible due to their short lengths, and researchers instead aim at identifying precursor miRNAs (pre-miRNAs). Many of the known pre-miRNAs have distinctive stem-loop secondary structure, and structure-based filtering is usual...

متن کامل

Impact of Physical Activity on Sleep: A Deep Learning Based Exploration

The importance of sleep is paramount for maintaining physical, emotional and mental wellbeing. Though the relationship between sleep and physical activity is known to be important, it is not yet fully understood. The explosion in popularity of actigraphy and wearable devices, provides a unique opportunity to understand this relationship. Leveraging this information source requires new tools to ...

متن کامل

Pre-training Neural Networks with Human Demonstrations for Deep Reinforcement Learning

Deep reinforcement learning (deep RL) has achieved superior performance in complex sequential tasks by using a deep neural network as its function approximator and by learning directly from raw images. A drawback of using raw images is that deep RL must learn the state feature representation from the raw images in addition to learning a policy. As a result, deep RL can require a prohibitively l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.06798  شماره 

صفحات  -

تاریخ انتشار 2017